

Year 2 - Adding 3 1 digit numbers			$7+3+2=12$
Year 2/3 - Adding 1 digit and 2 digit numbers to 100			$38+5=43$
Year 3	$24+15=$ Add together the ones first then add the tens. Use the Base 10 blocks first before moving onto place value counters.	Children to represent the base 10 pictorially.	$\begin{aligned} & 21 \\ & +34 \\ & \overline{21+34}= \\ & \square=21+34 \end{aligned}$ Calculate the sum of twenty-one and thirty-four.

Year 3 - Add numbers up to 3 digits		265 164	$\begin{array}{r} 265 \\ +164 \\ \hline 429 \\ \hline 1 \end{array}$
Year 4	H T 0 $-\infty$ 0 OOO 0	Chidren to represent the counters in a place value chart, circling when they make an exchange.	$\begin{array}{r} 243 \\ +368 \\ \hline 611 \\ \hline \end{array}$
Year 4 - Add numbers up to 4 digits			$\begin{array}{r} 1378 \\ +2148 \\ \hline 3526 \\ \hline 11 \end{array}$

Year 1	Physically taking away and removing objects from a whole (ten frames, Numicon, cubes and other items such as beanbags could be used). $4-3=1$	Children to draw the concrete resources they are using and cross out the correct amount. The bar model can also be used. Q シ®O	4-3= $\text { [n }=4-3$
Year 2	Counting back (using number lines or number tracks) children start with 6 and count back 2 . $6-2=4$	Children to represent what they see pictorially e.g.	Children to represent the calculation on a number line or number track and show their jumps. Encourage children to use an empty number line
Year 2 - subtract 1 and 2 digit numbers to 100 .			$\begin{array}{r} 56 \\ -28 \\ \hline 37 \\ \hline \end{array}$

Year 3	Column method using base 10 . 48-7	Children to represent the base 10 pictorially.	Column method or children could count back 7 . $\begin{array}{r} 48 \\ -\quad 7 \\ \hline 41 \end{array}$
Year 3 - subtract numbers up to 3 digits			$\begin{array}{r} 3135 \\ -\quad 273 \\ \hline 262 \end{array}$
Year 4	Th H T 0 $-\infty \varnothing$ $\varnothing \varnothing$ $\varnothing \varnothing \varnothing \varnothing$ \varnothing $\varnothing \varnothing$	Represent the place value counters pictorially; remembering to show what has been exchanged.	Th H T O - 4 5 4 - 2 2 4 2 2 3 0

Multiplication - key vocabulary: double, times, multiplied by, the product of, groups of, lots of, equal groups, exchange.			
Early Years	Repeated grouping/repeated addition 3×4 $4+4+4$ $4+4+4$ There are 3 equal groups, with 4 in each group.	Childrex will experiense equal groups of abjects. They will werk an practicel problem solving activities imesling	Double 2 boots $2+2=4$
Year 1			$\begin{aligned} & 1 \times 2(1+1) \\ & 5 \times 10(10+10+10+10+10) \end{aligned}$

Year 1	Share the muffins equally between the two plates. Complete the sentence. \qquad cakes shared equally between 2 is \qquad	Represent the sharing pictorially.	$6+2=3$ Children should also be encouraged to use their 2 times tables facts.
Year 2	Share the 12 cubes equally into the two boxes. There are \qquad cubes altogether. There are \qquad boxes. There are \qquad cubes in each box. Can you share the 12 cubes equally into 3 boxes?	Children to represent repeated subtraction pictorially.	Abstract number line to represent the equal groups that have been subtracted.
Year 1 /2 Solve problems grouping	There are 20 apples altogether. They are put in bags of 5 . How many bags are there?		$20 \div 5=4$

Year $1 / 2$ - divide 2 digits by 1 digit (sharing with no exchange)			$48 \div 2=24$
Year 3	$2 \mathrm{~d}+1 \mathrm{~d}$ with remainders using lollipop sticks. Cuisenaire rods, above a ruler can also be used. $13+4$ Use of lollipop sticks to form wholes- squares are made because we are dividing by 4 . There are 3 whole squares, with 1 left over.	Children to represent the lollipop sticks pictorially. There are 3 whole squares, with 1 left over.	$13 \div 4-3$ remainder 1 Children should be encouraged to use their times table facts; they could also represent repeated addition on a number line. ' 3 groups of 4 , with 1 left over'
Year 3 /4-divide 2 digits by 1 digit (sharing with exchange) Year 3 - base 10 Year 4 -place value counters	80 000000 ram 000000 0 000 0 000 0 000 0 000	52 $?$ $?$ $?$ $?$	$52 \div 4=13$

